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Abstract

This thesis aims to be a few building blocks in the bridge between theoretical

and practical software obfuscation that researchers will one day construct. We provide

a method for random uniform selection of circuits based on a functional signature and

specific construction specifiers.

Additionally, this thesis includes the first formal definition of an algorithm that

performs only static analysis on a program; that is analysis that does not rely on

the input and output behavior of the analyzed program. This is analogous to some

techniques used in real-world software reverse engineering.

Finally, this thesis uses the equivalent circuit library to empirically produce

some statistical data about enumerated circuit families and explains how this data

may be useful to future researchers.
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Obfuscation Framework Based on Functionally

Equivalent Combinatorial Logic Families

I. Introduction

As technological progress marches on, the protection of software in critical mil-

itary applications becomes more and more important. And yet at the same

time, United States policy strongly encourages the sale and transfer of some military

equipment to foreign governments and makes it easier for potential adversaries to get

access to this critical software [10]. How can we stop a potential adversary with access

to our software from effectively using it against us?

This line of reasoning always leads to the critical question, “How can you protect

a piece of software from the computer running it?” The answer to this question has

applications in many fields including cryptography, mobile agent security, and software

protection. Conventional wisdom says that this type of protection (or obfuscation) is

impossible and anecdotal evidence from professional software reverse engineers seems

to support this statement. In fact, Barak, et al. [1] formalize the notion of a “Virtual

Black Box” and then prove that it is impossible to construct a general, efficient

obfuscator using this model.

The results of Barak, et al. are not as catastrophic as they might appear. We

derive this impossibility result by constructing a family of unobfuscatable functions

that produce useful output to a potential adversary through the introduction of self-

reference. One might attempt to approach the problem by formalizing a method of

excluding self-referential functions from consideration. However, we will not travel

this path as it is fraught with peril of Gödelian proportions. Perhaps a more sane

way of attempting to avoid the consequences of this result is to focus on the program’s

usable output.
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The crux of the program encryption obfuscation paradigm [21] is that we perform

a two-phase obfuscation. In the first phase we encrypt the output of program P in

such a way that the output of the program appears to be that of a random oracle.

We refer to this construction as P+E. In the second, we protect the structure of the

program from intentioned manipulation by an adversary.

This thesis explores the creation of a circuit obfuscator for use in this second

phase as described in [15] that researchers may also use to construct useful circuit

library metrics. A secondary objective of this thesis is the detailed formalization of

some new models of obfuscation. Both of these objectives serve to further the study

of theoretical obfuscation.

1.1 Scope

The scope takes a two-fold approach to the obfuscation question, one from the

practical direction and one from the theoretical direction. The intent of this thesis is

not to fully bridge the gap between the two but one can think of it as a few pieces of

building material that may be used in the construction of this bridge. First, this thesis

details and justifies an algorithm designed to enumerate all possible circuits in a given

set. Then, it provides and justifies several new ways of looking at obfuscation models

developed by others. Definitively answering the question posed at the beginning of

this chapter is the stuff of legends and is far beyond the scope of this thesis.

1.2 Organization

We organize this thesis as follows. Chapter II provides a detailed background on

obfuscation formalization. Chapter III describes the creation of an algorithm designed

to fully enumerate a specific family of functions (combinational circuits). Chapter V

describes several novel formal descriptions of obfuscation and some results based on

those models. Finally, Chapter VI and summarizes the scientific contributions of this

thesis.

2



1.3 Definition of Terms

We use the notation of [1] and [6].

(PPT) Probabilistic polynomial-time Turing machine

(Circuit) A Boolean circuit composed of binary logic gates

(Program) Either a circuit or a TM

(AO(x)) The execution of algorithm A on input x with oracle access to oracle O.

(〈M〉) The function computed by TM M given as M(t, x). ⊥ if M(x) does not

terminate in t steps.

(Negligible function) A function µ : N→ R such that for every positive polynomial

p(·) there exists an N such that for all n > N ,

µ(n) <
1

p(n)

3



II. Background

Until recently, the study of software obfuscation has remained in the the realm

of so-called “fuzzy security” [2], that is security with poorly defined objectives.

While there are a number of commercially available products that make claims about

obfuscation capabilities, none have attempted to quantify the strength of their prod-

ucts. However, theoretical researchers have developed a few models to better quantify

exactly what it means to obfuscate a piece of software.

2.1 Virtual Black Box Obfuscation

Virtual black box is a formalization of perhaps the most intuitive idea of software

obfuscation, that of indistinguishability between an obfuscated program and a “black

box” that performs the same function as the program. [1] describes virtual black box

obfuscation for TMs and circuits as follows:

Definition II.1. A probabilistic algorithm O is a [virtual black box] TM obfuscator

if the following three conditions hold:

• (functionality) For every TM M, the string O(M) describes a TM that computes

the same function as M.

• (polynomial slowdown) The description length and running time of O(M) are

at most polynomial larger than that of M. That is, there is a polynomial p such

that for every TM M, |O(M)| ≤ p(|M |), and if M halts in t steps on some input

x, then O(M) halts within p(t) steps on x.

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible

function α such that for all TMs M

∣∣Pr [A(O(M)) = 1]− Pr
[
S〈M〉(1|M |) = 1

]∣∣ ≤ α(|M |)

We say that O is efficient if it runs in polynomial time.

4



Definition II.2. A probabilistic algorithm O is a [virtual black box] circuit obfuscator

if the following three conditions hold:

• (functionality) For every circuit C, the string O(C) describes a circuit that com-

putes the same function as C.

• (polynomial slowdown) There is a polynomial p such that for every circuit C,

|O(C)| ≤ p(|C|)

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible

function α such that for all circuits C

∣∣Pr [A(O(C)) = 1]− Pr
[
SC(1|C|) = 1

]∣∣ ≤ α(|C|)

We say that O is efficient if it runs in polynomial time.

These definitions say that an algorithm O is an obfuscator if for every PPT

adversary A with access to the text of an obfuscated circuit/TM there exists another

PPT S with only oracle access to an obfuscated circuit/TM such that for any obfus-

cated circuit/TM the probability of S returning a different result than A is negligible.

Informally, that is to say that anything A can do, S can also do.

2.1.1 Virtual Black Box Obfuscation Applications. Barak, et. al [1] note

several possible applications for a general program obfuscator. Two of the most

obvious ones are:

• (Software Protection) A virtual black box would allow an untrusted host to use a

proprietary algorithm without the possibility of reverse engineering. This would

also allow software developers to securely protect any number of software-based

copy-protection schemes that are currently easily bypassed.

• (Public-key Cryptography) If we could apply a virtual black box to a secret-

key cryptography system we would essentially be converting it to a public key

5



cryptography system because no adversary would be able to access the hidden

secret key.

Unfortunately, [1] proves that it is impossible to construct a general obfuscator

of this type by introducing a family of TMs and a family of circuits that are inherently

unobfuscatable. While this does not mean that these applications are impossible to

achieve, it does prove that there is no general way of doing so. We can compare this

to the halting problem where although there is no general way of determining if a

program will halt, it is quite simple to determine whether many specific programs

will. As an alternative to virtual black box obfuscation (for circuits), [1] propose the

idea of indistinguishability obfuscation.

2.2 Indistinguishability Obfuscation

Definition II.3 (indistinguishability obfuscator). We define an indistinguisha-

bility obfuscator in the same way as a circuit obfuscator, except that we replace the

“virtual black box” property with the following:

• (indistinguishability) For any PPT A, there is a negligible function α such that

for any two circuits C1, C2 which compute the same function and are of the

same size k,

|Pr [A (O (C1))]− Pr [A (O (C2))]| ≤ α(k)

That is to say, the obfuscations of any circuits that compute the same function

are not distinguishable in polynomial time. [1] note that inefficient indistinguisha-

bility obfuscators exist (“Let O(C) be the lexicographically first circuit of size |C|
that computes the same function as C”) and postulate that an indistinguishability

obfuscator is “as good” as any other obfuscator. [8] clarify the notion that an obfus-

cator is “as good” as any other obfuscator with the notion of best-possible obfuscation

wherein a program may leak some non-black-box information but no more than any

other program that performs the same function.

6



2.3 Best-Possible Obfuscation

Definition II.4 (best-possible obfuscation). An algorithm O, which takes as in-

put a circuit in C and outputs a new circuit, is said to be a (computationally/sta-

tistically/perfectly) best-possible obfuscator for the family C, if it has the preserving

functionality and polynomial slowdown properties and also has the following property

( instead of the virtual black-box property).

• Computational/Statistical/Perfect Best-Possible Obfuscation. For all large enough

input lengths, for any polynomial size circuit adversary A, there exists a polyno-

mial size simulator circuit S such that for any circuit C1 ∈ Cn and for any circuit

C2 ∈ Cn that computes the same function as C1 and such that |C1| = |C2|, the

two distributions A(O(C1)) and S(C2) are (respectively) computationally/statis-

tically/perfectly indistinguishable.

[8] prove that all best-possible obfuscators are also indistinguishability ob-

fuscators and efficient best-possible obfuscator is equivalent to an efficient indistin-

guishability obfuscator. Unfortunately, there are no obvious applications for the best-

possible or indistinguishability obfuscator paradigms.

2.4 Intent Protection

McDonald and Yasinsac introduce intent protection in [15] and further elabo-

rate in [13, 21]. We do not refer to this as an obfuscation paradigm because it does

not necessarily imply the existence of an obfuscator. Instead, it poses two decision

problems:

• Does a specified adversary understand a specified program?

• Is a specified program intent protected?

We define understanding and intent protection as follows:

7



Definition II.5. A TM A black box understands TM P if the following condition

holds when A has oracle access to P :

Pr [A(y) = x, x ∈ X|P (x) = y] > |X|−1 + ε

Definition II.6. A TM A black box understands circuit C if the following condition

holds when A has oracle access to C:

Pr [A(y) = x, x ∈ X|C(x) = y] > |X|−1 + ε

Definition II.7. A TM A white box understands TM P if for A, given access to the

string describing P :

Pr [A(y) = x, x ∈ X|P (x) = y] > |X|−1 + ε

Definition II.8. A TM A white box understands circuit C if for A, given access to

the string describing C:

Pr [A(y) = x, x ∈ X|C(x) = y] > |X|−1 + ε

In each definition, ε is a small constant. What this means, informally, is that

for an adversary to understand a program, the adversary must be able to, given some

level of access to the program, be able to determine, with a probability better than

guessing, an input that will produce a specified output. We explore some weaknesses

in this model and propose an alternative in Chapter V.

Definition II.9. A circuit/TM as black box intent protected/while box intent pro-

tected if there does not exist a TM that white box understands/black box understands

that circuit/TM.

Under white box intent protection an adversary will be able to perform both

static and dynamic analysis of the program. Under both white box and black box

8



intent protection, an adversary will be able to run the program any number of times

(subject to a polynomial bound.) We categorize these types of attacks respectively

as white-box and black-box attacks in order to show that we need to think of

intent protection from both a black-box and a white-box perspective. McDonald and

Yasinsac also propose a type of attack, based entirely upon the structure of a program,

that is analogous to static attacks used when reverse engineering real software. We

explore a way of formalizing this type of attack in Chapter V.

2.5 Program Encryption Obfuscation

Because the user of a program typically needs to have some level of understand-

ing of the function of the program, intent protection is not a desirable property for

many programs. However, one possible application would be a program that produces

encrypted output. We conjecture the existence of an obfuscator defined as follows1:

Definition II.10. A probabilistic algorithm T is a program encryption circuit obfus-

cator if the following three conditions hold:

• (functionality recoverability) There exists a probabilistic algorithm, R such that

for every circuit C, every string k, and every x in the domain of C,

R(T (C, k)(x), k) = C(x).

• (polynomial size) There is a polynomial p such that for every circuit C and every

string k, |T (C, k)| ≤ p(|C|)

• (“intent protection” property) For any circuit C and any k, T (C, k) is intent

protected.

We say that T is efficient if it runs in polynomial time.

2.5.1 Program Encryption Applications. Clearly it would not make sense to

program encrypt most pieces of software because it produces output that is, by design,

1Program encryption is not necessarily restricted only to circuits but since this thesis will not
explore TM program encryption, we only use the circuit definition.
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Figure 2.1: Program encryption visualization. Note that C’ is intent protected.

not immediately useful to the program’s user. However, there are a surprisingly large

number of potential uses for this paradigm.

• (Public key cryptography) In the trivial case, an encrypted program functions

as a public key cryptosystem. Simply create a program that outputs its input

and use a program encryption obfuscator on it. By the definitions of intent

protection and program encryption, an adversary would be unable to decrypt

any output generated by this program.

• (Software/algorithm protection) In [18], Sander and Tschudin introduce func-

tion hiding, a concept similar to program encryption and imagine the following

scenario:

Suppose Alice devises an algorithm and wishes to allow Bob to use the algorithm

without allowing Bob to understand how it works and also wants to restrict how

many times Bob can use the algorithm. We also suppose that the computational

intensity of the algorithm prevents Alice from merely running it for Bob.

If Alice gives Bob a program encrypted version of the program, Bob can run the

program as many times as he wants, but will only be able to use the outputs

that Alice decrypts for him.

10



• (Secure utilization of distributed computing resources) Suppose that we have

access to a large network of insecure computers and wish to use them to extract

a private key from a public key via a brute-force attack. Program encryption

would prevent an adversary with access to some or all of these machines (but

not the machine decrypting the results) from discovering the key when it is

cracked.

• (Spyware) Consider a piece of software designed to collect information about the

machine on which it is running and transmit it over the internet. A spyware au-

thor could use program encryption to prevent a host machine from determining

which information the malicious program is collecting2.

• (Military applications) Suppose a system must perform data analysis in an un-

secured location while relaying some information back to a central location.(A

possible application here would be a program that performs image analysis from

an attached video camera.) If an adversary physically compromises the system,

program encryption obfuscation would prevent this adversary from determining

anything about the program that cannot be inferred from the context of the

system.

2.6 Program Encryption Obfuscator Development

If a general efficient program encryption obfuscator exists, it will at least need

to satisfy the following properties: functionality recoverability, polynomial size, and

intent protection.3 To accomplish this, we divide the task into two stages. In the first

stage, black box protection, we establish functionality recoverability and hard-

to-invert. In the second stage, white box protection, we establish virtual black

box.

2 [3] has suggested a method for doing this using Private Information Retrieval. However, program
encryption could reduce communication complexity for a single query from O(log(n)) to O(1).

3If we drop the efficiency and polynomial size requirements, McDonald and Yasinsac show that we
can construct this type of obfuscator by applying the output to a cryptographically strong encryption
algorithm [15] and enumerating all inputs [20].
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2.7 Black Box Protection

[21] show that the existence of one-way functions implies that theoretically, it

is easy to accomplish black box protection. We can hide the output of our circuit

without the aid of external random numbers (which may compromise the hard-to-

invert property) as follows4:

C ′(x) = (fk′(x), fk(fk′(x))⊕ C(x))

where f is a key-based one-way function, k is the recoverability key and k′ is another

key randomly generated during the program encryption process. This additional

randomness key ensures that if, for example, C(1) = C(5), not only is it the case

that C ′(1) 6= C ′(5), but it is also the case that there is no way for an adversary with

black-box access to C’ to determine that C(1) = C(5).

2.8 Characterizing White Box Protection

The real stumbling block to successfully developing a program encryption engine

is, as one might expect, protecting the white-box implementation. This will be the

primary focus of this thesis. McDonald and Yasinsac postulate (under the random

program oracle model [14]) that if an adversary, given full access to P is unable to

distinguish O(P ) from a randomly selected program then O(P ) is intent protected.

Full intent protection implies that neither white box structure or black box

behavior reveals programmatic intent. As Figure 2.2 depicts, full intent protection

involves transformation of both input/output relationships (s(p, k, X, Y ) and t(p, k))

as well as semantic preserving changes to the internal representation of a program

(w(p′′, k)).

Though other work focuses on black box transformations [1, 21], in this thesis

we focus on white box changes that preserve semantics. In particular, we may con-

4suggested by [1]
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Figure 2.2: Full intent protection

sider white box transformation as an iterative set selection algorithm. A white box

algorithm that uniformly selects a random equivalent program from a bounded set of

all programs with equivalent behavioral semantics provides one way to characterize a

random program or “set” selection.

Since we can accomplish black box protection in polynomial time, the question

remains whether an efficient (polynomial-time) algorithm exists that can perform a

fully uniform, random selection when given some initial program as a starting point.

For small, bounded program sizes, we can enumerate all possible program representa-

tions and in polynomial time make a uniform, random selection from such a set. For

the purposes of this research, we limit programmatic scope to functionality embodied

in combinatorial logic circuits. In Chapter III, we describe the design and imple-

mentation of software that performs full set enumeration and random selection of

combinational circuits. In Chapter IV, we characterize the efficiency of our algorithm

and analyze the polynomial limitations for efficient set generation based on specific

circuit characteristics. In Chapter V, we provide a more formalized definition for set

selection operations.
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III. Methodology for Circuit Enumeration and Random

Selection

We developed the circuit enumeration algorithm as a method of enumerating

entire sets of legal circuits for two experimental purposes: random circuit

selection and complete circuit set analysis. The initial motivation for developing this

algorithm was the ability to select a random circuit with a specific truth table from the

size-bounded set of all possible circuits. Research indicates that an algorithm that per-

forms random sub-circuit selection and replacement (as visualized in Figure 3.1) may

provide a level of randomness to a program that can frustrate adversaries. The algo-

rithm developed in this chapter is designed to fulfill the requirements of the “Random

Equivalent Selection” component of this meta-algorithm. We postulate that perform-

ing these operations repeatedly can results in a diffusion of control flow within the

circuit, analogous to the confusion/diffusion properties of operations in cryptographic

theory [19]. For a detailed look at the “Sub-circuit Selection” component, see [17].

Figure 3.2 gives an example selection/replacement operation.

3.0.1 Bounding the obfuscation question. Essentially, all obfuscators per-

form set selection operations. That is to say an obfuscator takes as input a program

from the set of all programs and return another program from the set of all programs.

We can further qualify this by saying that for any program, P we can define O(P ) as a

selection from a size-bounded set of programs, that is, from a finite set. Additionally,

we can distinguish between a semantics preserving transformation, one that selects

from the set of equivalent programs and a recoverable semantics changing transform,

one that selects from the set of programs See Figure 3.3 for a visual representation of

the two types of transformations.

3.0.2 Circuit set analysis. An additional motivation, one that we explore in

Chapter V, is the ability to perform empirical analysis of entire sets of circuits. We

believe that if it is possible to somehow characterize an entire set of circuits, there may
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Figure 3.1: A high-level visualization of a sub-circuit selection/replacement obfus-
cation algorithm

be a way to reveal certain uniform properties of randomness that may lead the way

forward toward an obfuscation algorithm that can seek to optimize these properties.

3.0.3 Implementation. As a proof of concept, we developed a Java im-

plementation of this algorithm to support various types of interfaces and methods

of persistence. See Figure 3.4 for a domain model. For more information on this

implementation, see Appendix A.

3.1 Sets of circuits

Both purposes bring up a question: what exactly constitutes a set of legal

circuits? Here we explore several different approaches.

3.1.1 Graphs. One way to approach the question is to treat each circuit

as an undirected graph where each node represents a gate or input and each edge

represents a connection between two gates. A naive approach would be to assume

that our set of circuits is the size-bounded set of all graphs. This method would

be obviously advantageous as the algorithm would be quite simple and the size of
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Figure 3.3: Obfuscating transformations as set selection operations. δ represents
the finite set of programs to select from. δfp represents the set of programs in δ that
are semantically equivalent P . δfz represents the set of programs in δ with recoverable
functionality of δfp.

Figure 3.4: Implementation domain model
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a set would be easily calculable. Indeed, some researchers have used just such an

approach [16].

However, we can easily see that this method would tend to create illegal circuits.

Specifically this would generate, circuits with loops, gates with no outputs, and gates

with no inputs, connections between inputs, and inputs to inputs. A solution using

undirected graphs (where an edge represents a forward connection only) or directed

acyclic graphs would also tend to have all of the previous problems except for inputs

to inputs and circuits with loops. This does not mean that a graph data structure is

useless for representing a circuit, but it clearly does not present a method for easily

enumerating legal circuits.

3.1.2 A more complex notion. In fact, what constitutes a “legal circuit” is

not obvious. Even assuming that a circuit consists of inputs and gates with exactly

two inputs each, some of which are also outputs, there are still quite a few questions

that we need to ask in addition to the obvious questions of number of inputs, number

of outputs, and size.

1. What types of gates do we allow in the circuit? A two-input Boolean circuit

can exhibit as many as 16 different behaviors.

2. Are gates symmetric? That is to say, should we consider a gate with inputs

(X1, X2) as equivalent to a gate with inputs (X2, X1)? This will depend on

which gate types are used.

3. Should we allow gates that are identical to other gates based on the inputs?

That is to say, can we have two gates in a circuit such that the truth table for

each gate, based on all circuit inputs, is the same? (See Figure 3.6.)

4. Should we allow the circuit immediate access to the constants True and False?

Gates that exhibit these properties may exist in a circuit, but it may change

the properties of a set of circuits if these constants are available immediately.

18



Figure 3.5: An example of a gate where both inputs have the same origin

Figure 3.6: An example of a circuit containing two gates with the same external
signature

5. Should we allow both inputs to a gate to originate in the same place? (See

Figure 3.5.)

6. Does the set contain all circuits within a certain size bound or only all circuits

of an exact size?

7. Which gates may be outputs? In an ideal circuit, any gate may be an output.

However, if we want to index a circuit by output signature, outputs must be

restricted to a specific set of gates.

Since users of this algorithm may require various answers to each of these ques-

tions, it must allow a significant amount of flexibility. That is to say, the algorithm

must allow users to select values for each of these.

3.2 An algorithm framework

A basic recursive enumeration algorithm is as follows:

generateAll(gateNum) {

1. for each gate type:
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Figure 3.7: A circuit with two open outputs

2 for each possible combination of inputs:

3. add gate type with specified inputs

4. if (legal circuit)

5. output circuit

6. if(gateNum<size bound)

7. generateAll(gateNum+1)

}

The reader may note that there is a subtlety regarding output gates. Since

every gate and every input in a circuit is a potential output, it might at first appear

that we can ignore the number of output gates altogether when determining which

circuits a specified circuit type can categorize. After all, an algorithm can assign each

output to any gate or node in the circuit. However, we must also consider the fact

that all circuits must have at least one gate that does not output to another gate in

the circuit. We must assume that this gate must be an output. What if there are

more than one of these gates? This introduces the concept of “open outputs” (see

Figure 3.7) and causes us to realize that a circuit may have no more open outputs than

the total number of outputs. Line 4’s legal circuit check accounts for this. However,

one must note that just because a circuit has an illegal number of open outputs, it is

20



Figure 3.8: An example of a one-output circuit that is not enumerable unless the
algorithm allows intermediate circuits with an illegal number of open outputs

not necessarily the case that circuits based on this circuit have an illegal number of

outputs. See, for example, Figure 3.8.

3.3 Refining the algorithm framework

We can see that this algorithm satisfies question 1 but does not address any of

the other questions. For each other question, we introduce a Boolean parameter to

the algorithm and modify the algorithm as follows:

3.3.1 SymmetricGates. This variable answers question 2. This effects the

set of possible combinations of inputs referred to in line 2 of the algorithm.

3.3.2 RedundantGates. This variable answers question 3. To implement,

we need to add an additional filter after line 2 checking for redundant gates.

3.3.3 AllowConstants. Responding to question 4, we can modify line 2 to

include the two constants along with the circuit’s standard inputs.
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3.3.4 DoubleInputs. See question 5. To implement, we again modify line

2 to include this property in the legal combination of inputs.

3.3.5 ExactCount. See question 6. If this is true, we modify the definition

of a legal circuit in line 4 to include an exact number of gates.

3.3.6 SimpleOutputs. See question 7. Once again, we turn to line 4 and

adjust the definition of a “legal circuit”. This time, we ensure that all open outputs

in a circuit must be at the end of the circuit, that is the last n gates where n is the

number of outputs in the circuit definition.

3.3.7 A refined algorithm. After taking these new constraints into account,

we can create a fully fleshed-out algorithm:

generateAll(gateNum)

{

for each gate type:

for each enumerateInputCombinations()

add gate type with specified inputs

if (RedundantGates and truth table of new gate is

not equal to another gate’s truth table)

if (legalCircuit())

output circuit

if(gateNum<size bound)

generateAll(gateNum+1)

}

enumerateInputCombinations()

{

if(AllowConstants)

include the constants True and False with the inputs
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select all gates and inputs g (1..n)

if(SymmetricGates)

deselect all combinations (a,b) such that a<b

if(not DoubleInputs)

deselect all combinations (a,b) such that a=b

return remaining combinations

}

legalCircuit(){

if (ExactCount and circuit does not contain

the maximum number of outputs)

return false

else if (SimpleOutputs and any but the last numOutputs

gates contain open outputs)

return false

else if (the circuit contains more than numOutputs

number of open outputs)

return false

else

return true

}
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IV. Analysis of Functionally Equivalent Logic Families

This chapter demonstrates some of the metrics that researchers may use to char-

acterize both a random selection from a circuit family and the family itself in

a meaningful way. This chapter focuses on analyzing circuit families that can be

enumerated and on analyzing the efficiency of the enumeration and random selection

software developed in Appendix A. In this chapter, we will refer to classes of circuits

using the following notation: I-O-G-T-R-C-D-E-S

• I numbers of inputs

• O number of outputs

• G number of gates

• T The set of gate types

• R RedundantGates property

• C AllowConstants property

• D DoubleInputs property

• E ExactCount property

• S SimpleOutputs property

For example, the circuit family 3-1-3-And+Or-T-T-F-T-T would correspond

to the family of circuits with 3 inputs, 1 output, 3 gates, gates of type AND and OR

and the remaining Boolean properties set as specified. Note that we do not include

the SymmetricGates property because we will not be using asymmetric gates and so

always set this property to true.

4.1 Library size

It should be apparent from the description of the algorithm that increasing

the I,O, and G properties will increase the size of the library as will increasing the

magnitude of the T property. We can also see that the R, C, and D properties will

increase the size of the class and that the E and S properties will decrease its size.
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Table 4.1: Count of 3-1-X-Nand circuits with various properties.
Smallest +RedundateGates +AllowConstants +DoubleInputs -ExactCount

1 3 3 10 15 15
2 9 9 50 90 105
3 33 45 400 855 960
4 186 333 4550 11430 12390
5 1350 3393 68800 201195 213585
6 12936 45369 1323950 4468050 4681635
7 152532 769005
8 2141907 16093413

For our first set of experiments, we consider just the 3-1-X family with only Nand

gates. In Table 4.1 and Figure 4.1 we start with the smallest circuit classes in the

family (3-1-X-Nand-F-F-F-T-T) and selectively activate and deactivate switches until

we have the largest. (Note that for the 3-1 family we do not change the SimpleOutputs

property because a one output circuit will always have this property.)

One interesting thing to note: the last two lines on the graph appear to overlap.

This is because the size increase produced by negating the ExactCount property is

overshadowed by the exponential blow-up of the circuit class. We elide this property

in the other graphs. This can be compared to other families such as 4-1-X-Nand

(Figure 4.2) or 3-1-X-And+Or+Nand+Nor+Xor+Xnor (Figure 4.3).

4.1.1 Fitting the data to a curve. Using exponential regression, we can fit

data acquired in this manner to an exponential curve of the form y = aeb×x. For

example, running exponential regression on the data in Table 4.1 produces the data

in Table 4.21.

4.2 Output entropy

One metric that may be useful for some applications, including perhaps one

way of distinguishing a circuit with output that appears to be truly random is via

1This data was produced using the web-based regression application available at
http://www.xuru.org/rt/ExpR.asp
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Figure 4.1: Count of 3-1-X-Nand circuits with various properties

Figure 4.2: Count of 4-1-X-Nand circuits with various properties
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Figure 4.3: Count of 3-1-X-And+Or+Nand+Nor+Xor+Xnor circuits with various
properties

Table 4.2: Best fit of some of the data in Table 4.1 to y = aeb×x.
Smallest +RedundateGates

a 1.933749384× 10−3 5.538010625× 10−4
b 2.602981062 3.011479389

Error for 1 2.97388677 2.988748183
Error for 2 8.647368738 8.771391936
Error for 3 28.23809065 40.35527049
Error for 4 121.6954897 238.6310097
Error for 5 481.6361261 1475.664165
Error for 6 1209.67142 6413.653633
Error for 7 5819.569087 22467.72118
Error for 8 3537.836907 12717.36283
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Figure 4.4: Black-box entropy distribution for some of the 3-1-X-And+Or+Nand+-
Nor+Nxor+Xor-F-F-F-T-T classes of circuits

some measure of entropy. One measure of entropy for a circuit, as used by Macii and

Poncino [12] is that of a circuit’s output entropy or what one might call black-box

entropy (We use the term “black-box entropy because we are referring to the entropy

of the circuit when viewed as a black-box, that is without any information about the

internal structure . Whether a similar concept of “white-box entropy” also exists is

an interesting open question.) This is one way of calculating the “uncertainty” or

“randomness” of a circuit’s output.

We compute the black-box entropy H of a circuit X via the following formula.

H(X) = −
2n∑
i=1

pi log2(pi)

where n is the number of outputs and pi is the probability over all input combinations

that the circuit will output the ith possible output combination.

Figure 4.4 gives an example of the entropy distribution for several sets of circuits.

At this time, we can not say much about this particular property. However, it should

be noted that there is no guarantee that entropy will indicate the presence of the
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x1 x2 x3 y1 y2

0 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

Figure 4.5: An example truth table of a function with maximal black-box entropy
but other undesirable properties

desired “hard to invert” property discussed in Chapter II. For example, any circuit

where all possible output combinations are equally represented across all possible

input combinations would have maximal black-box entropy. For example, the function

described in Figure 4.5 specifies a function that is easy to invert but has maximal

black-box entropy.

4.3 Structural metrics

In Chapter V, we mention the possibilities for structural metrics that reveal

nothing about a circuit’s black-box characteristics. But what is a concrete example

of a structural metric? Let’s consider the obvious metric of “fanout”. Simply, fanout

for a gate or an input is the number of gates that are dependent on that gate or

input. One might think that average fanout would be a possible structural metric

for a family, but we need to realize that this metric will always be the same for a

given family of circuits with the same number of inputs, outputs, and gates. This is

because the total number of inputs to gates in a circuit will always be the same (that

is, 2 times the number of gates). But what about a distribution metric? Here’s an

interesting experiment: let’s try to find out what effect the boolean variables have on

average fanout of a circuit library.

29



Figure 4.6: Average fanout distribution for some of the 3-1-4-Nand classes of circuits

Figure 4.6 gives an example of average fanout distribution of a few circuit classes.

It is interesting to note that properties that increase the set size tend to skew the

fanout distribution away from the median.

4.4 jCXL performance analysis

Since we can estimate library size via exponential regression we can also estimate

the performance of the jCXL software (in terms of both time and disk space use) in

much the same way. First though, we need to set up some baselines and establish a

relationship between library size and enumeration time.

Experiments on 104 different libraries2 revealed a strong linear correlation be-

tween library size × maximum number of gates and disk usage (see Figure 4.7.)

This reveals that we can estimate disk usage of a library via the equation y =

0.307x − 16.239 where x is product of library size and number of gates and y is the

estimated disk space usage in kB. Likewise, these same experiments reveal a weaker

2using an experimental environment of a Intel Xeon CPU 5160 @ 3.00FHz, 3.00 GB of RAM
running Windows XP
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Figure 4.7: Relationship between library size × number of gates and disk usage
with linear regression

but still quite significant linear correlation between library size × maximum number

of gates and time to persist on our test machine (see Figure 4.8.) This time the

relevant equation is y = 0.0906x− 262.58.

So for any library class we can estimate the number of circuits in the library

via exponential regression and then estimate the time to enumerate and disk space

usage using the two above formulas. In the next chapter, we look at the software

obfuscation problem from a slightly different direction and explore some of the more

theoretical notions of obfuscation discussed in Chapter II.
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Figure 4.8: Relationship between library size × number of gates and time to persist
with linear regression

32



V. Advancing Some Theoretical Models of Obfuscation

5.1 Motivation

In this chapter, we explore some weaknesses in previous formal models of obfus-

cation, introduce some new models, and make some statements about these new

models.

There are two obvious directions we can take in an attempt to bridge the gap

between theoretical and practical software obfuscation: expand the practical to in-

clude the theory, or expand the theory to include the practical. The previous chapter

expanded the practical; this chapter expands the theoretical.

5.2 Intent Protection Weakness

If trapdoor one-way functions exist, the definition of intent protection intro-

duced in Chapter II may not be strong enough. Consider the following pseudocode

(F (y) is a trapdoor one-way function.):

P(x){

sqr=x^2;

return F(sqr);

}

Since F is a one-way function, it is impossible for an adversary to determine

sqr based on y even with access to this source code. sqr is a function of x so the

adversary also cannot determine x. However, an adversary with access to this source

code will be able to determine that the program computes and returns an encryption

of a square function. This seems to defeat the purpose of protecting the intent of

a program. Therefore, we propose a new definition of intent protection based on

the previously virtual black box property and the standard definition of a one-way

function [7]:

Definition V.1. A circuit C with n inputs and m outputs is virtual black box intent

protected if the following conditions hold:
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• (“virtual black box” property) For every PPT A, there is a PPT S and a negligible

function α such that

∣∣Pr [A(O(C)) = 1]− Pr
[
SC(1|C|) = 1

]∣∣ ≤ α(|C|)

• (“hard to invert” property) For every PPT A’, there is a negligible function α′

such that

Pr[C(A′(C, y)) = y] ≤ α′(|C|)

where y ← {0, 1}m

5.3 Program encryption and random programs

We introduced the concept of program encryption in Chapter II. In [14], Mc-

Donald and Yasinsac introduce the random program model, a practical framework for

defining the semantics of software that correlates to the traditional notions of a data

encryption cypher. A program satisfies the random program model if it is compu-

tationally indistinguishable from a comparable randomly generated program. They

define an ideal program encrypter as one that would generate a program that satisfies

the random program model. Formally, we define program encryption as follows:

Definition V.2. A probabilistic algorithm T is a program encrypter if for all circuits

C the following four conditions hold:

• Functionality recoverability: There exists a probabilistic algorithm, R such that

for every string k, and every x in the domain of C R(T (C, k)(x), k) = C(x).

• Polynomial size increase: There is a polynomial p such that for every string k,

|T (C, k)| ≤ p(|C|)

• Hard to invert: For every PPT A, every string k, and every x in the domain of

C there is a negligible function α′ such that

Pr[(T (C, k)(A(T (C, k)(x))) = T (C, k)(x)] ≤ α′(|C|)
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This is to say that if we program encrypt the circuit with some key k as T (C, k),

that some adversary A, when given the output of T (C, k) for any x is unable to

produce some x′ such that T (C, k)(x) = T (C, k)(x) with better than negligible

probability. This is the same thing as saying that T (C, k) must evaluate a one-

way function.

• Obfuscation: The VBB, indistinguishability, or BP property.

Note that because the output of a program encrypted circuit is not useful to

an adversary, Barak’s impossibility results do not rule out the possibility of creating

a VBB program encrypter. For the remainder of this paper, we will refer to VBB

program encrypters simply as program encrypters. However, we conjecture that all

three types of program encrypters are equivalent. An alternative, utilizing the random

program model, which we refer to as random program encryption is as follows:

Definition V.3. We define a statistical/computational random program encrypter

T the same as a program encrypter except that we replace the Obfuscation property

with the following:

• Random program indistinguishability: With k as a random variable, the distribu-

tion T (C, k) is respectively statistically/computationally indistinguishable from

a uniform distribution of the set of all programs of the same size as T (C, k).

This definition was introduced because intuitively, the idea of producing a pro-

gram with certain measurable properties of randomness may logically lead toward an

algorithm for producing this effect. However, we suspect that it is impossible for a

program to possess both the the “random program indistinguishability” property and

the “hard to invert” property. Intuition combined with physical examination of some

types of randomly generated programs tend to indicate that the signatures of random

programs do not appear random and therefore do not satisfy the “hard to invert”

property. (For example, we would expect random programs to generate significant

number of gates with constant output.) Whether it is possible to define “random”

programs in such a way that their output is computationally indistinguishable from
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a one-way function is an intriguing open question1. However, for the purposes of this

thesis, we will look for a purely “structural” way of comparing two circuits. In an at-

tempt to find a similar definition that is equivalent to that of a program encrypter, we

propose a new definition that we base only on “structural” properties of the circuit.

We also propose a new type of obfuscation based on the same properties.

Definition V.4. We define a structurally random program encrypter T the same as a

program encrypter except that we replace the Obfuscation property with the following:

Random program structural indistinguishability: With k as a random variable, the

distribution T (C, k) is structurally indistinguishable from a program randomly selected

from the set of all programs of the same size as T (C, k).

Definition V.5. A structurally random obfuscator is defined the same way as a VBB

obfuscator except that the VBB property is replaced with the following:

• Random program structural indistinguishability: The distribution O(C) is struc-

turally indistinguishable from a program randomly selected from the set of all

programs of the same size as O(C).

These definitions introduce a new term: structurally indistinguishable. Before we

formally define this term, some discussion on what it means is appropriate. Consider

our previous definition of a computational random program encrypter. In order for

the two distributions to be computationally indistinguishable, it must be the case that

no PPT can distinguish between a truly random program and a program encrypted

program. But we know that truly random programs exhibit I/O behavior that is not

consistent with the “hard to invert” property so any PPT can look for this behavior.

Our goal, therefore, is to restrict the set of distinguishing PPTs to just those that do

not perform I/O analysis. That is to say, just those that perform structural analysis.

But how in the world can we do that? This leads us to the concept of structural

indistinguishability.

1 Perhaps one approach would be to consider sets of circuits without the RedundantGates property
mentioned in Chapter III. One way of at least determining that a circuit is not hard to invert might
involve the use of Shannon entropy as used in [11].
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Figure 5.1: A visualization of a uniform random set selection

5.4 Set selection obfuscation

Definition V.6. A Computational/statistical/perfect set selection obfuscator is de-

fined the same way as a VBB obfuscator except that the VBB property is replaced with

the following:

• Computational/statistical/perfect set selection property: There exists a polyno-

mial α such that O(C) is respectively computationally/statistically/perfectly in-

distinguishable from a uniform distribution over the set of all all circuits of size

α(|C|) that perform the same function as C.

See Figure 5.1 for a graphical notion of this concept.

5.4.1 Comparison with previous definitions.

5.4.1.1 Indistinguishability Obfuscation. We can prove that a perfect

set selection obfuscator is also a perfect indistinguishability obfuscator. We can also

prove that statistical and computational set selection obfuscators are (respectively)

statistical and computational indistinguishability obfuscators.
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Proof. Suppose that algorithm O is a perfect set selection obfuscator and C1 and

C2 are two circuits that compute the same function and are the same size k. By

the definition of a set selection obfuscator, the distribution O(C1) is identical to the

distribution O(C2). Therefore, for any algorithm A

|Pr [A(O(C1))]− Pr [A(C2)]| = 0

Therefore O is a perfect indistinguishability obfuscator.

Proof. Suppose that algorithm O is a statistical set selection obfuscator and C1 and

C2 are two circuits that compute the same function and are the same size k. We’ll

refer to a perfect set selection obfuscation for C1 or C2 as P . By definition

|Pr [A(O(C1))]− Pr [P ]| < c

and

|Pr [A(O(C2))]− Pr [P ]| < c

Therefore, by simple algebra it must be the case that

|Pr [A(O(C1))]− Pr [A(O(C2))]| < c

and O is a statistical indistinguishability obfuscator.

Proof. Suppose that algorithm O is a computational set selection obfuscator.

Let’s refer to the uniform distribution over the set of all circuits of size α(|C|)
that perform the same function as P . By definition we know that for any C1 and C2,

O(C1) is computationally indistinguishable from P and O(C2) is computationally

indistinguishable from P . That is to say that for any PPT A

|Pr[A(O(C1)) = 1]− Pr[A(P ) = 1] ≤ α(n)|
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and

|Pr[A(O(C2)) = 1]− Pr[A(P ) = 1] ≤ α(n)|

From this, we can see that

|Pr[A(O(C2)) = 1]− Pr[A(O(C2)) = 1] ≤ α(n)|

5.4.1.2 Best-possible obfuscation. We know that if O is an efficient

indistinguishability obfuscator for a circuit family C, then O is also an (efficient)

best-possible obfuscator for C [8] and we have proven that perfect/statistical/compu-

tational set selection obfuscation is perfect/statistical/computational indistinguisha-

bility obfuscation. Therefore we can positively say that an efficient perfect/statisti-

cal/computational set selection obfuscator is also an efficient perfect/statistical/com-

putational best-possible obfuscator.

5.4.2 Impossibility result. Since the existence of a statistical/perfect best-

possible obfuscator implies a collapse in the polynomial hierarchy [8] and an efficient

statistical/perfect set selection obfuscator is a statistical/perfect best-possible obfus-

cator, the existence of an efficient statistical/perfect set selection obfuscator implies

a collapse in the polynomial hierarchy. However, we can not make such a statement

about a computational best-possible obfuscator.

5.5 Structural indistinguishability

There are several different intuitive ways of attempting to formally define struc-

tural indistinguishability. Structural indistinguishability is a key component in defin-

ing an adversary that performs white-box analysis of a program without performing

black-box analysis.
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5.5.1 Flawed notions of structural indistinguishability. Consider an efficient

computational set selection obfuscator O1 and a structurally random program ob-

fuscator O2 (with the concept of structural indistinguishability still undefined.) We

know that O1 is necessarily a BP obfuscator, that is to say, it is better than any other

obfuscator. Now, let’s attempt to define structural indistinguishability in such a way

that O2 approximates O1. Perhaps we want the distribution of a structurally random

obfuscator to be the same as a set selection obfuscator?

But no. Our concept of structural indistinguishability requires that there is

some property present in truly random circuits that is not present in others. Since a

set selection obfuscator performs a random selection over the entire set, it does not

imply the existence of any property that is only true in some circuits.

Consider two intuitively ideal models for obfuscation, reduction to the two-level

circuit representation of the circuit and uniform selection from the random set of

equivalent programs. While both of these models are inherently non-polynomial to

realize, perhaps we can assume that there is something about one of these models

that can be quantified in some way that may lead to a polynomial-time algorithm for

approximating this “ideal-ness” of a circuit.

Specifically with regards to the two-level model, perhaps there is some property

that the two-level representation possesses but that only some of the circuits in the

polynomial size-bounded family of equivalent circuits possess. Perhaps we can call

this property the truth table property and conjecture the following:

For every circuit signature, an algorithm can find the truth table property is in

the two-level truth table representation of the circuit as well as in a non-negligible

number of circuits within the polynomial-size bounded set of circuits with that signa-

ture. This set also contains a non-negligible number of circuits that do not have this

property. But once again, there is a flaw: it is easy to define a “truth table property”

such that this conjecture is true (for example, if we select the property strictly in

terms of the size of the circuit.)
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5.5.2 A better notion of structural indistinguishability. Let’s once again

consider the idea of a random program distinguisher that takes as input the structural

property. We will define a means of creating metrics for a circuit that reveal nothing

about the black-box behavior of the circuit.

5.5.2.1 NCMP.

Definition V.7. A non-black-box circuit metric producer (NCMP) is a PPT N

such that for any PPT D (a distinguisher), any circuit C, the truth table repre-

sentation of C (tt), the uniform distribution of all random truth tables of the same

size (TR) D(N(C), tt) is computationally indistinguishable from D(N(C), tr) (where

tr is a random variable distributed according to TR). That is, Pr[D(N(C), tt) =

1]− Pr[D(N(C), tr) = 1] is negligible.

Definition V.8. A NCMP N is a best possible NCMP if for any NCMP M , any

PPT A, and any circuit C there exists a PPT S such that S(N(C)) is computationally

indistinguishable from A(M(C))

This definition guarantees that for every adversary who tries to compute some

information about the circuit from the metric produced by any NCMP, a simulator

can produce that information from the metric produced by N . This definition gives us

a NCMP that must generate all non-black-box information about a circuit. From here

it is simple to define what it means for two circuits to be structurally indistinguishable

(see Figure 5.2)

5.6 Conclusion

Clearly, this section has proposed more questions than it has answered. How-

ever, one important question answered is: “How can we formally define a machine

that performs only structural analysis of a circuit without performing I/O analysis?”

This question is extremely significant because it provides a theoretical basis for a

concept that until now has only existed in the world of practical obfuscation: static

analysis. We accomplish this via use of our concept of a “best possible NCMP.” This
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Figure 5.2: A structural distinguisher. If the distinguisher (any PPT) cannot dis-
tinguish between the protected program and the randomly selected program using
only the best possible NCMP, the programs are structurally indistinguishable.

formalization is one of the key results of this thesis and is certainly worthy of further

study.
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VI. Conclusions

The research presented in this thesis has significant relevance to the mission of the

United States Air Force and United States Department of Defense. Now, more

than ever, the protection of critical software is an essential component of national

security. However, this thesis aims toward an incremental furthering of the science of

program encryption; we did not design it to stand alone. Instead, we expect that its

results will one day be pieces in the bigger mission of finally building a bridge between

practical and theoretical obfuscation.

Once realized, the applications specified for both VBB obfuscation (impossible

in the general case, but certainly open to exploration in other specific cases) and

program encryption in Chapter II will have any number of potential military uses. In

Chapter III we proposed an algorithm for enumerating entire sets of circuits. This

algorithm can be used both for performing random selection of circuits by signature

and for perfectly calculating metrics on small classes of circuits. This algorithm also

lends itself to a simple modification that allows calculation of statistical metrics on

large classes of circuits. Then, in Chapter IV, we demonstrated some of the capa-

bilities of the algorithm introduced in Chapter III and implemented in Appendix A.

Finally, in Chapter V, we formally define what it means for an algorithm to perform

only static analysis on a circuit (which can be easily translated to a formalization of

an algorithm that performs only static analysis on any type of program). This rep-

resents a significant step in the science of software obfuscation as, to our knowledge,

we are the first researchers to accomplish this feat. If future research is invested in

these subjects, the following directions seem the most likely to bear fruit.

6.1 Future work

• Expand/refine algorithm - We developed the algorithm in this thesis in a some-

what ad-hoc manner and in something of a vacuum. That is to say, we did

not formalize specifically how it was to be used in combination with a replace-

ment algorithm. Whether a future researcher focuses on the algorithm random
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equivalent circuit selection or on metrics generation, a better formalization of

the algorithm’s purpose should be developed first.

• Optimize software - A researcher could improve the prototype software detailed

in Appendix A in at least two obvious ways, both involving efficiency. First,

the software is in dire need of speed optimization. The software as it is is

actually significantly slower than the legacy software and could be significantly

faster if some of the more costly Java constructs were optimized or the program

were re-written in C/C++. Additionally, our objectives in constructing the the

database-based persistence layer currently implemented were primarily ease of

use and not speed. A customize sorted flat-file based system implemented using

the LibraryManager interface would almost certainly be better than what is

currently implemented.

• Analyze usefulness of metrics with regards to properties of random programs

- One hypothesis that could be more fully explored is that there is some mea-

surable property of random programs that makes them somehow “more obfus-

cated” than programs created for a purpose. This thesis touches the surface of

this hypothesis but does not espouse any definite opinions on this subject. One

possible metric suggested by [16] is the existence of certain “Motifs” or patterns

that appear to be more common in constructed circuits than in random circuits.

• Analyze usefulness of metrics with regards to sub-circuit selection - Another

way ahead builds on the work of Ken Norman [17]. Developers of algorithms

that obfuscate random circuits by selecting sub-circuits and replacing them

with random selections must be aware of what the replacement set consists

of. This is especially true if the algorithm (as suggested but not implemented

by [17]) is driven by a stochastic search algorithm designed to approximate the

optimization of some desirable property.

• Adversary characterization - Many techniques in commercial obfuscation rely

on informal definitions of the capabilities of an adversary. As a contrast, for-
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mal definitions of adversaries (including the ones used in this thesis) rely on

comparisons to Turing Machines or other formal constructs in theoretical com-

puter science. One way ahead may be a “best of both worlds” compromise that

characterizes a realistic adversary in formal terms.

• Theoretical work - Another possible approach toward future results from this

research lies within the realms of theoretical computer science. Specifically,

researchers with strong backgrounds in computational complexity theory, in-

formation theory, and cryptographic theory may be able to develop and prove

additional statements regarding the relationship between obfuscation and theo-

retical computer science.
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Appendix A. Software Development

The first step in developing the software was to determine exactly how users of

the software should interact with it. We developed a simple primary use case

(Figure A.1) using Cockburn’s use case template [4].

One key component of this simple use case is the performance target. It becomes

quickly obvious that enumeration and lookup of circuits alone will not meet this

requirement. Clearly we need some sort of persistence layer. This should lead the

reader to something resembling the simple UML model/view/controller-based domain

model in Figure A.2.

A.1 Analysis of Legacy Software

Previous researchers performed experiments using a utility designed to generate

and print circuits called “CXL.” A previous researcher developed CXL using C++.

While several different versions existed, all had the following limitations:

• No support for circuits with multiple outputs

• No runtime configuration of options including circuit library size (program

needed to be recompiled to generate circuits with different sizes)

• No cross-platform support–only compiles in Unix-like operating systems with

gcc.

• Unable to produce output in an easily machine-readable form

• Does not take advantage of computers with multiple processors

The first design decision was whether to modify CXL or to develop a new

solution from scratch. An attempt to reverse-engineer CXL revealed that the design of

CXL was such as to minimize circuit library generation time at the expense of program

flexibility and maintainability. We can also see from the class diagram (Figure A.3)

that the original author made some attempt to provide abstraction for the purpose

of understandability but that his primary concern was the ability to simplify writing

a circuit to a flat file.
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CHARACTERISTIC INFORMATION

Goal in Context: Allow retrieval of all

circuits with specific characteristics with a specified

‘‘signature’’ (number of inputs, outputs, size of circuit,

input/output behavior.)

Level: Primary Task

Preconditions: None

Success End Condition: Lookup may be performed

Failed End Condition: Lookup may not be performed; error returned

Primary Actor: User or other system

----------------------------------------

MAIN SUCCESS SCENARIO

1. User or other system requests

specification-based circuit lookup

2. System returns circuits

----------------------

RELATED INFORMATION

Performance Target: Minimize time between steps 1 and 2

Frequency: Many times per second

Figure A.1: Software use case

An analysis of the source code also reveals a quite tight coupling of the user

interface, circuit persistence and circuit generator components specified in the domain

model as evidenced in Figure A.4.

A.2 Initial design

Because of the original CXL’s limitations and inflexible design, we decided to

decided to rewrite it from scratch. We chose to use Java in order to make the program

inherently cross-platform and because of Java’s built-in multi-threading support. The

initial software design focused on the Circuit and CircuitGenerator components

and a rudimentary user interface. This was in order to ensure that the output of this

phase was a useful product.

A.2.1 Circuits. First, we needed to determine how to represent a circuit.

One key component that our use case implies is a way of representing the specific
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Figure A.2: Domain model
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Figure A.3: Legacy CXL Class Diagram
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void generate_all (int unused, int node)

{

if (node > INPUT_SIZE)

{

...

// save generated circuit

if ((unused == 0) || (node >= CIRCUIT_SIZE))

{

save_circuit ();

}

...

}

...

}

void save_circuit ()

{

...

cout << cs.get_value() << " " << cs << endl;

... }

Figure A.4: Portion of legacy source code

set characteristics defined in Chapter III. We implemented this component in the

CircuitType class (see Figure A.5).

A.2.2 Circuit enumerator. Once Circuit and all related classes are estab-

lished, the CircuitEnumerator class (Figure A.6), designed to enumerate all possible

circuits of a given type is fairly simple.

The algorithm is essentially a multi-threaded version of the algorithm defined

in Chapter III. Multi-threading allows the algorithm to take advantage of the multi-

processor capabilities of modern computers.

The astute reader may note the use of an observer and realize that this allows

much flexibility in exactly what the program will do with data generated by the circuit

generator.
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Figure A.5: The initial circuit class diagram

Figure A.6: Circuit enumerator class diagram
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G3: 10001000 G2: 11110111 G0=I0==I1,G1=I0!&I1,G2=G1|I2,G3=G0&I1

G3: 10111011 G1: 10011001 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I1^G2

G3: 11111111 G1: 10011001 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I1|G2

G3: 00000000 G1: 10011001 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I1!|G2

G3: 01101111 G2: 01110111 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I2!&G1

G3: 10010110 G2: 01110111 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I2==G1

G3: 10010000 G2: 01110111 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I2&G1

G3: 01101001 G2: 01110111 G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I2^G1

G3: 01111111 G0=I0!&I1,G1=I0!&I1,G2=G1!|I2,G3=G0^G2 G3: 01010101

G2: 11110111 G0=I0==I1,G1=I0!&I1,G2=G1|I2,G3=G0^I1 G3: 01111111

G0=I0!&I1,G1=I0!&I1,G2=G1!|I2,G3=G0|G2 G3: 11111001 G2: 01110111

G0=I0&I1,G1=I0==I1,G2=I0!&G0,G3=I2|G1 G3: 11011101 G2: 11110111

G0=I0==I1,G1=I0!&I1,G2=G1|I2,G3=G0|I1 G3: 10000000

G0=I0!&I1,G1=I0!&I1,G2=G1!|I2,G3=G0!|G2 G3: 10001000 G2: 00001000

G0=I0!&I1,G1=I0!&I1,G2=G1!|I2,G3=G1!&G0

Figure A.7: Part of the output of PrintCircuits running in unfiltered mode for a 3
input, 2 output, maximum of 4 gate circuit

A.3 User interface

The PrintCircuits class was designed as a command-line user interface. It is

a simple application that registers an observer with the circuit generator in order to

display information about generated circuits. It is capable of operation in two modes:

filtered and unfiltered.

Unfiltered mode simply displays all circuits that match specified type along with

the signatures of all of their open outputs. See Figure A.7 for an example. Note that

some circuits have 1 open output and some have 2.

Filtered mode, on the other hand, displays only circuits where the specified

outputs signature matches all open outputs and any remaining specified signatures

match a gate within the circuit. See Figure A.8 for an example. Note that the

program only displays circuits that can satisfy the specified signatures.

A.4 Development of persistence layer

The legacy software included persistence in the form of generated flat files.

However, to ensure flexibility in types of persistence, this capability was defined as
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G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=I0==G0,G3=G2|G1

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=I0&G0,G3=G0|G1

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=I0&G0,G3=G1|G0

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=I0&G0,G3=G1|G2

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=I0&G0,G3=G2|G1

G3: 01111111 G1: 00100010 G0=I0==I1,G1=I1!|G0,G2=G1^I0,G3=I2!&G2

G3: 01111111 G1: 00100010 G0=I0==I1,G1=I1!|G0,G2=G1^I0,G3=G2!&I2

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0==I0,G3=G0|G1

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0==I0,G3=G1|G0

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0==I0,G3=G1|G2

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0==I0,G3=G2|G1

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0&I0,G3=G0|G1

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0&I0,G3=G1|G0

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0&I0,G3=G1|G2

G3: 01111111 G2: 00100010 G0=I0!&I1,G1=I2!&I0,G2=G0&I0,G3=G2|G1

Figure A.8: Part of the output of PrintCircuits running in filtered mode for a 3
input, 2 output, maximum of 4 gate circuit

Figure A.9: The persistent circuit chooser and library manager

in interface in jCXL (see Figure A.9). We developed a sample implementation using

the open source H2 Database because of claims that it was faster than other database

products (see Figure A.10). However, the overhead associated with a database en-

sures that this implementation is not optimal in terms of speed and leaves open the

possibility of a more efficient implementation in the future.

A.5 Development of machine interface

We developed a simple machine interface to work with Ken Norman’s replace-

ment algorithm known as “CORGI” [17]. The meat of this interface is an algorithm
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Figure A.10: Developer-provided operations/second benchmarks for H2 (Source:
[9])

that converts the static, easily enumerable circuit type used by jCXL to the graph-

based circuit type used by CORGI.

A.6 Refinement of algorithm runtime

Using a powerful performance analysis tool known as the Eclipse Test & Per-

formance Tools Platform (TPTP) [5], we were able to locate and optimize some

bottlenecks in the software. TPTP revealed that over half of the runtime of the enu-

meration software involved the edu.afit.pet.cxl.nodes.gates.EnumerableGate-

.generateSignature method. A more in depth analysis revealed that inefficient

representations of data and algorithms in the NodeSignature and various Binary-

CircuitGateType classes were the cause of the slowdown. By changing the inter-

nal setup of NodeSignature and the BinraryCircuitGateType abstract class to use

bitwise arithmetic operations (see Figure A.11, the total runtime of the generate-

Signature method was reduced to less than 1/5 of the total runtime of the algorithm.

56



Figure A.11: The more efficient circuit class diagram

A.7 Software Testing

We used the JUnit1 automated testing framework to conduct unit testing on

a large number of features of the program, including verification of correctness of

enumerated circuits and CORGI conversion.

1see http://www.junit.org
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